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Abstract  

At the conclusion of each basketball season, each conference selects 1st, 2nd, and sometimes 3rd 

all-conference teams based on player performance for that season. Often, these all-conference 

teams reflect biases in the media rather than evaluations based on player performance alone. The 

baseball statistic Wins Above Replacement, WAR, is useful in quantifying the impact of each 

player through the number of wins contributed to his respective team by comparing each player 

to a designated replacement level player. This statistic can also be applied to basketball analysis 

to perform a similar function as in baseball, despite a vastly different formulation. However, the 

WAR statistic has limitations in its player analysis in basketball, particularly through failing to 

include defensive statistics and having no established definition of a replacement player. In this 

paper, I utilize the Wins Above Replacement statistic along with other key statistics, particularly 

in the defensive aspect of the game, to create an econometric model to better determine which 

players contributed the most to their team’s success. These statistics determine which players 

should be selected to the all-conference team at the end of the collegiate basketball season.  
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Introduction 

At the conclusion of each basketball season, each conference selects the all-conference 

teams that consist of the top players based on the performances of the recently completed season. 

The smaller conferences typically choose a first and second team (ASUN Conference, 2020) 

with the larger conferences selecting a first, second, and third team (ACC Network, 2021). 

Additionally, all conferences typically select an all-freshman team and an all-defensive team 

along with honoring a conference player of the year, a defensive player of the year, and a coach 

of the year (ASUN Conference, 2020). These teams and accolades are chosen by a combination 

of head coaches in the conference and members of the media who covered the conference 

throughout the year. Too often, these selections do not result in the truly deserving players, who 

had the best statistical seasons, being selected to the all-conference team. These negligent 

selections can be attributed to several different biases such as narratives created by the media, 

recency bias, which members of the media are allowed to vote, bias toward winning teams, or 

other discrepancies that arise from the voting process. Additionally, the criterion for selection is 

not always clear whether the committee’s methods are based upon on court performance or a 

perceived image off the court (Berri, 1999).  

 With the introduction of the book The Bill James Baseball Abstract by Bill James, James 

introduced a new method of analysis for the game of baseball that paved the way for what is 

more commonly known as sabermetrics (James, 1980). The use of sabermetrics has been further 

popularized as a result of the continued success of the Oakland Athletics through utilizing the 

techniques detailed in the book Moneyball: The Art of Winning an Unfair Game by Michael 

Lewis, published in 2003. These unique strategies have allowed the Athletics to exceed the 

expectations of being a small market team with a comparatively low payroll for Major League 
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Baseball (Mason and Foster, 2007). Specifically, Wins Above Replacement, WAR, is a 

particularly motivating statistic behind the increased use of sabermetrics as the measure creates 

an obvious comparison between each player. By definition, the Wins Above Replacement 

statistic measures a player’s value to his team by determining how many wins he contributes to 

the team’s success as compared with a replacement level player. Multiple methods exist for 

calculating WAR in baseball, but the statistic remains useful in terms of quantifying player 

success and contribution to the team in terms of their peers (Major League Baseball, 2021). To 

successfully use the Wins Above Replacement statistic, an understanding of the role of a 

replacement level player is necessary as their limited impact creates a basis for the WAR 

calculations to better comprehend which player is the most valuable to their team. The WAR 

statistic becomes particularly helpful for determining postseason awards as all players are easily 

comparable. A replacement level player is defined as a player who contributes a marginal level 

of production to the team’s success but will cost nothing over the league minimum salary to 

acquire. In baseball, a replacement player is typically defined as a minor league player who 

could be called up at a moment’s notice to replace an injured or recently traded player 

(Slowinski, 2010). The predecessor to Wins Above Replacement is another statistic that serves a 

similar role in analyzing player contribution to their team’s success. The value over replacement 

player (VORP) statistic was originally developed for use in Major League Baseball in the early 

2000s to measure a player’s marginal increase in production as compared to an easily acquired 

player who can be fairly paid the league minimum (Woolner, 2002). In basketball, the Box Plus 

Minus (BPM) statistic can similarly be used to measure a player’s impact on the game through 

an integration of all traditional box score information, such as points, rebounds, and assists, and 

turnovers. However, BPM’s usefulness is limited by its inability to quantify a player’s playing 
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time as BPM is a rate statistic based on production per 100 possessions. BPM also struggles to 

account for less quantifiable data that is not found in the box score, particularly on the defensive 

end. BPM can be useful for player analysis in basketball as the statistic is used to calculate the 

value over replacement player statistic in basketball as calculated in Equation (1). 

VORP = ([BPM – (-2.0)] * (% of possessions played) * (% of games played))              (1) 

As shown in Equation (1), the value over replacement player statistic is used to manipulate the 

factors shown in the equation to calculate a player’s individual contribution more accurately. The 

VORP statistic creates a useful and meaningful method for comparative player analysis that can 

be applied to both pro basketball in the National Basketball Association (NBA) and college 

basketball in the National Collegiate Athletic Association (NCAA). A parallel between the 

VORP and WAR statistics in baseball and basketball is created. Returning to Equation (1), a 

value of -2.0 is defined to be the level of production for a replacement level player in terms of 

BPM in the NBA despite the theoretical value for a replacement level player’s BPM to be a 

value of 0. A replacement level player has a BPM value of -2.0 as many below average NBA 

players spend the majority of the game on the bench as the above average players are likely to 

accumulate the majority of the available minutes, especially as the season progresses into the 

playoffs. The next aspect of Equation (1) is the percentage of minutes played which simply 

expresses the fraction of time that each player is on the court out of the total available minutes 

throughout the season. This portion of Equation (1) determines the impact a player could have 

based on the percentage of time the player is on the court. Finally, the last piece of Equation (1) 

is the percentage of games played that represents the fraction of games played by the player as 

compared with the team’s total number of games. Similarly, the percentage of games played 

helps to understand the impact that an individual player can have on the game when they are 
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involved. However, both percentages in Equation (1) can be inaccurate representations of player 

impact. A player could get substituted into every game within the last moments after the outcome 

has been decided without having any impact on the game or appear significantly in only a few 

games. These situations would create a biased Value Over Replacement Player for that player as 

they would have a higher value despite having less of an impact on the game. These VORP 

values would be heavily inflated as these players do not have the same impact as a player who 

consistently produced over the entire season. The value over replacement player statistic does not 

accurately display who produced over the whole season but who produces based upon the 

percentage of time on the court. VORP is a rate statistic similar to BPM which fundamentally 

makes sense as BPM is used to calculate VORP. Building on the value over replacement player 

statistic, the wins above replacement statistic in basketball is calculated by multiplying VORP by 

2.7. This multiplication factor creates a method of basketball analysis to determine each player’s 

contribution to their team’s success that is similar to baseball despite the formula for calculating 

Wins Above Replacement in basketball being vastly different. In both sports, this analysis 

compares which players are the most integral to their team’s success by creating a baseline for 

player evaluation as all players are compared to the same replacement level player (Myers, 

2020).  

In this paper, I analyze how to better determine who truly deserves to be selected to these 

collegiate all-conference teams based on an econometric approach utilizing the Wins Above 

Replacement statistic. I plan to run a linear regression with multiple independent variables to 

correct the issues of the Wins Above Replacement statistic and build upon its strengths. I utilize 

hypothesis testing along with other tests such as the Park test and the White test to ensure that I 
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am using the correct variables while identifying and correcting any issues that violate the 

classical assumptions in econometrics such as multicollinearity and heteroskedasticity.  

Literature Review   

In the current formulation, the Wins Above Replacement statistic has several problems 

such as the inability to be a known, tangible quantity along with an inability to be easily 

reproduced, which has led to many different formulations of the statistic. Some of these statistics 

include openWar and cWAR, and each statistic utilizes a different approach to correct the issues 

of the WAR statistic. The openWAR statistic was proposed by Benjamin Baumer in an attempt 

to correct the problems of the WAR statistic by creating a streamlined system of analysis to 

better understand which players contribute the most to their team’s success. The openWar system 

of analytics utilizes easily accessible data in contrast to WAR, which often uses data that is 

inaccessible to the public. The system aims for a higher level of transparency in calculations 

while providing the ability to calculate the statistic at multiple intervals of a given season. The 

openWar statistic is much closer to a tangible quantity due to better accounting for uncertainty 

values in its calculation than the WAR statistic (Baumer, 2015). However, openWar has its own 

problems such as inaccurate predictions and continuing to struggle with defining an accurate 

replacement level criteria as the statistic uses an arbitrary cutoff in defining who is not a 

replacement player by excluding the batters with the most plate appearances and the pitchers 

with the most batters faced with the remaining players being replacement level (Kilanowski, 

2020). This arbitrary designation creates a situation where top players getting injured would be 

labeled as replacement level players which limits the success of the replacement level player 

definition. Therefore, the openWar statistic does not succeed in correcting all of the WAR 

statistic’s problems as the issue with replacement player definition is still present, which 
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increases the difficulty to reproduce the calculations necessary to compute openWar. Other 

research proposes new statistics to overcome the shortcomings of the Wins Above Replacement 

statistic. One of these statistics is cWAR which analyzes player performance in the Cape Cod 

Developmental League. This scholarly piece looks to better utilize the wins above replacement 

technique by more accurately describing what it means to be a replacement level player. The 

literature describes a replacement level player by being in the league for less than a week, fewer 

than forty plate appearances for position players, or facing fewer than forty batters for pitchers. 

By more accurately defining what constitutes a replacement player, any variation of the WAR 

statistic will have more success in defining player contribution to their respective team 

(Kilanowski, 2020).  

Other Statistical Measures 

New statistical measures have been developed in sports outside of baseball and basketball 

that serve a similar purpose as the Wins Above Replacement statistic. Many of these statistical 

advances have taken place in the sport of hockey, particularly with the introduction of the Wins 

over Replacement Player (WORP) statistic (Shea and Baker, 2012) and the Total Hockey Rating 

(THoR) (Shuckers and Curro, 2013). Specifically, the WORP statistic is formulated to 

exclusively quantify the contribution of a team’s goalie as compared with a replacement level 

goalie (Shea and Baker, 2012). The first step in calculating the WORP statistic is completed by 

taking a multiple regression of a team’s Goals For (GF) and Goals Against (GA) in explaining a 

team’s total wins. This regression creates a foundation for determining a goalie’s importance to 

their team success as this position has a direct impact on the number of goals scored by the 

opposing team which directly impacts the success of their team (Shea and Baker, 2012). This 

work is largely built on Bill James’ “Pythagorean Method” in baseball analytics: 
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           Win% ≈ RS2 / (RS2 + RA2)                                                                                     (2)    

The Pythagorean Method’s similar construction to the Pythagorean Theorem leads to its 

designation. In this scenario, win percentage calculates the number of games won out of the total 

number of games played while RS denotes runs scored and RA denotes runs allowed (James, 

1980). This Pythagorean method from Bill James was adapted by James Cochran and Ron 

Blackstock to introduce their reimagined win percentage model for use in player analytics in 

hockey:  

Win% ≈ P (GP, GF, GA)                                                        (3) 

Win% ≈ GP (GF1.99063 / (GF1.99063 + GA1.99063))                                   (4) 

The function P in Equation (3) denotes a Pythagorean method with GP representing 

games played, and GF and GA are goals for and goals against, respectively (Cochran and 

Blackstock, 2009). Equations (3) and (4) were utilized by Stephen Shea and Christopher Baker to 

develop the WORP statistic to better analyze goalie performance:  

WORP ≈ P (GPst, GFst, GAst ) – P(GPst , GFst , GAst + GASrst)                      (5) 

WORP ≈ ((GPst) (GFst
1.99063 / (GFst

1.99063 + GAst
1.99063)) –((GPst) (GFst

1.99063 / (GFst
1.99063 + 

GAst
1.99063 +GASst

1.99063))                                                                   (6) 

Each statistic represents team s and season t for goalie r in the second term while GP, GF, 

and GA represent the same values from equations (3) and (4) (Shea and Baker, 2012). The use of 

the enhanced win percentage model gives the WORP statistic the ability to compare goalies 

within a single season to determine who had the greatest impact on their team’s success while 

also comparing goalies from any team and season to determine who had the most influence on 

their team’s success in the history of the National Hockey League. However, the statistic remains 

somewhat limited due to its limited as the statistic analyzes the goaltender position exclusively 
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and not any other position in hockey. To analyze player performance more broadly within 

hockey, THoR was developed to compare the statistical contributions of forwards and 

defensemen more accurately through the use of Markov chains. The foundation of this statistic is 

derived by using Markov chains to consider every event that occurs within a hockey game and 

evaluating these events based on the probability of leading to a goal being scored. Furthermore, 

this statistic considers whether a player began a shift in the offensive or defensive zone, filters 

out the effects of their teammates and their opponents, and considers whether the particular 

player is playing at home or on the road. Because of the low scoring rates in an NHL game, the 

analysis becomes easier to isolate the effects of various game events that directly lead to a goal. 

Specifically, this statistic analyzes the changes in probability up to twenty seconds after an event 

occurs as a goal scored outside of the twenty second time frame is insignificantly impacted by 

the original event. Additionally, a shot’s probability of scoring a goal is determined based upon 

the type of shot taken as well as where the shot occurs on the ice. The statistic only evaluates 

game play when both teams are at full strength and have all five skaters and a goalie on the ice, 

which excludes any time spent on the power play, penalty kill, or after pulling the goalie at the 

end of the game. The even-strength aspect of this statistic is particularly useful as 10 players will 

be on the floor at all times during a basketball game as no event in basketball compares to a 

power play in hockey. However, the authors present a model for extending the statistic to uneven 

player situations such as the power play. To calculate the THoR value, the probabilities of each 

event that directly creates a goal for the player of their teammates must be accumulated to 

represent their season long contribution to team’s success:  

THoR = per event value * 80 * 82/6                                                   (7) 
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In calculating for the THoR value in Equation (7), the number 80 approximates the 

number of even strength events that occur in each hockey game. A non-lockout NHL season has 

82 games. In order to adjust for players with a smaller sample size, the value is divided by 6. 

Additionally, this calculation models a player’s impact based on theoretically playing the same 

number of games as compared to an average player whose impact causes few events that create 

goals, which results in the average player having a THoR rating of zero (Shuckers and Curro, 

2013). The formulation of the THoR statistic serves a similar function as statistics such as VORP 

and WAR as it analyzes individual player contribution over a season compared to a replacement 

level player. Furthermore, the THoR statistic could be used in conjunction with the WORP 

statistic to analyze the individual contributions of all positions more accurately within the sport 

of hockey. The THoR statistic has the unique ability to compare the net goals contributed by 

each player regardless of how many games played, which makes the statistic particularly useful 

(Shuckers and Curro, 2013).  

Measuring the Success of a Statistic 

In addition to the various statistics that attempt to improve on the issues of the wins 

above replacement statistics, other literature focuses on determining the success of various 

statistical measures in sports in measuring their intended area of analysis. The accuracy and 

reliability of a particular statistic depends on the statistic’s ability to be discriminating in 

measuring its intended area, stable enough to provide accurate measurements over time, and 

must be independent from other statistics. Specifically, a clear differentiation exists between rate 

statistics and statistics based on total playing time in terms of their characteristics and use in 

sports analytics. Rate based measures are viewed as less discriminating and more stable while 

total minutes metrics are believed to be more discriminating and less stable. Rate based statistics 
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such as Offensive Rating (ORtg), Defensive Rating (DRtg) and BPM analyze player contribution 

on a per-game or per-minute basis. However, some statistics can more accurately incorporate 

total playing time into the analysis such as Win Shares, VORP, and WAR. These rate-based 

statistics are considered more appropriate in estimating a player’s skill level whereas the total 

time metrics more accurately reflect a player’s overall seasonal contribution to their respective 

team which is important for my research (Franks, 2016). Overall, the total minutes metrics are 

considered more reliable as an increased amount of playing time would suggest a larger 

contribution to the team’s performance. However, total minutes measures alone do not better 

recognize player ability than any other type of statistic. Because these types of metrics serve two 

different roles in sports analytics, the statistics should not be directly compared to each other but 

should be used together to better understand player performance and contribution to their teams. 

Overall, these statistics are useful in getting a better understanding of who is the most valuable to 

their team. However, the statistics fall short in terms of the independence criteria for statistical 

reliability as they fail to accurately quantify the defensive aspect of a basketball game. In the 

formulation of many rate-based and total minute statistics, there is limited inclusion and 

influence of defensive statistics (Franks, 2016). Similarly, statistics such as BPM and VORP 

only account for defensive statistics such as blocks and steals while the BPM statistic equally 

distributes defensive rebounds throughout the players on the court without regard to their actual 

production. Other research attempts to quantify the defensive aspects of the game of basketball 

more accurately. This literature attempts to correct this statistical oversight and counteract the 

overemphasis of the offensive side of the ball to analyze player performance and contribution to 

team success more appropriately (Myers, 2020).  
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Developing Analytics for the Defensive Side of the Ball  

To better analyze the defensive aspect of a basketball game, it is an important to 

understand the roles of the on-ball defender and the players playing help-side defense. Players on 

defense want to antagonize their offensive counterparts into turning the ball over or taking a low 

percentage shot unlikely to produce points. A key analytic tool is evaluating the impact of a 

defender through their ability to contest and prevent easy passes or shots by the offense. 

Contested passes are considered passes where a defensive player exhibits willful intent to disrupt 

the offense while being close enough to impede the offensive player’s progress. Alternatively, an 

uncontested pass is defined as willful inaction from the defensive player that results from 

excessive separation from the offensive player or failing to obstruct the offensive player’s 

movements. By measuring the number of passes contested caused by the defense, the success of 

the offense can be analyzed in spite of the defense’s efforts. Through the literature, contested and 

uncontested passes are determined to be complements of one another which suggests offensive 

success can be significantly negatively correlated to the level of contested passes that are 

pressured by the defense. Therefore, forced turnovers have a more direct and significant impact 

on limiting offensive performance. The forced turnovers help to outline the relationship of the 

contested passes and antagonizing offensive performers as contesting passes at a higher rate will 

often lead to more forced turnovers and a lower field goal percentage for the offensive unit. 

Despite the potential usefulness of contested passes, any defensive analysis including contested 

passes is likely too complicated to properly analyze the impact on their opponent’s offensive 

production. This complexity prevents its inclusion in the defensive analysis proposed by 

Bartholomew and Collier and in statistical analysis in sports in general (Bartholomew and 

Collier, 2011).  
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Another piece of literature builds upon defensive statistical inefficiencies by developing 

new statistical measurements that better analyze the defensive side of the ball. Dean Oliver’s 

Basketball on Paper: Rules and Tools for Performance Analysis introduces several statistics to 

address the lack of defensive analytics. Specifically, he provides a measure that quantifies a 

defensive player’s ability to get stops on an individual basis. A stop occurs whenever a team can 

prevent their opposition from scoring. Typically, stops are considered on a team basis as five 

players are needed to successfully get a stop, but Oliver proposes the Individual Stops statistic to 

quantify how an individual player influences their team’s ability to get stops. The five players on 

the court must work together as a team to get a stop, but the Individual Stops statistic allows for 

the calculation of which players are the biggest catalyst for effectively getting stops. 

Individual Stops = FTO + FFTA/10 + [FM * FMwt * (1- DOR%)] + [DREB * (1- FMwt)] (8) 

 As shown in Equation (8), FTO is the number of turnovers forced by the defense while 

FFTA represents the number of free throws missed by a player’s opponent. FM quantifies how 

many shots that a player is directly responsible for causing whereas FMwt is the adjustment for 

the difficulty of shot caused by the defender as compared to simply getting a rebound from the 

other team missing a shot.  

FMwt = (DFG% *(1-DOR%))/ (DFG% *(1-DOR%) + (1-DFG%) * DOR%)           (9) 

DOR% represents the percentage of offensive rebounds that the opposing team is able to collect. 

In contrast, DREB is a team’s ability to get a defensive rebound once the opposition misses a 

shot. DFG% represents the percentage of possessions that the opposition scores on the defense. 

A player who has a higher number of individual stops will have a larger impact on their team’s 

success and ultimately should have a greater VORP or WAR value, which communicates they 

are worth more compared to a replacement level player. Each player’s defensive success can also 



  Seely 17 

 

be quantified by the number of scoring possessions allowed, DScPos, where players with a lower 

DScPos value would be considered a better defender. However, this statistic could create a 

negative bias toward players who are on the court for a significant number of minutes as they 

will be responsible for allowing more scoring plays as a result of increased playing time. 

Therefore, a statistic such as Stop %, which quantifies the percentage of possessions that a 

defensive player does not allow a basket or commit a foul, is more likely to accurately reflect the 

true defensive talent of a player as the statistic communicates a player’s individual defensive 

influence on the game. DRtg is another defensive statistic that attempts to quantify an individual 

player’s impact on the defensive end of a game. However, this calculation is largely based on 

their team’s defensive rating which could create a negative influence that is difficult to overcome 

if a player is an above average defender playing on a team that does not defend well.(Oliver, 

2004).  

Determining an Individual’s Contribution in a Team Sport 

Another key determination in accurately assessing a player’s individual contribution is 

filtering out the contributions of their teammates. This consideration is important for 

differentiating the best players from the players who are surrounded by the most talented team. 

Often, losing teams fail to accumulate a large enough number of positive statistics or end up 

creating too many negative ones. However, a player’s statistical value to their team should be 

independent of the teammates around them, and they should be evaluated consistently from team 

to team. Therefore, a focus on the player’s individual statistical output is necessary to evaluate 

their true worth to their team (Berri, 2019). Specifically, several statistics function to remove the 

impact of a player’s teammates to assess individual impact more accurately. The WORP statistic 

was mentioned earlier, but another version of the statistic analyzes a goaltender’s performance 
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by removing the impact of the goaltender’s teammates and opponents. This individualized 

version of WORP is Team Independent WORP, or TIWORP. This variable can be calculated 

with the following equation:  

TIWORP = bt * (minutesrst /minutest) * SOGt * (SV%t - SV%rst)                    (10)  

The bt values are shown in Table 1, which are found by the taking a multiple regression 

of the goals for and goals against variables to determine the number of wins created by a goalie 

while the minutesrst and SV%rst are the minutes played and average save percentage, respectively, 

for goalie r on team s in season t. Similarly, minutest, SOGt, SV%t are total minutes, total shots 

on goal, and average save percentage, respectively, for goalies in season t. The Team 

Independent WORP value allows for adjusting a goalie’s WORP value by removing the impact 

from his respective team. WORP is often biased by the number of shots that a goalie sees as 

more shots faced leads to a higher WORP value, so the TIWORP value is able to correct this bias 

from the number of shots faced to better evaluate goaltenders (Shea and Baker, 2012). 

Table 1: Beta Values Used to Calculate TIWORP from 1982- 2010 

Season b value Season b value 

1982-83 -0.1380 1996-97 -0.1607 

1983-84 -0.1362 1997-98 -0.1790 

1984-85 -0.1201 1998-99 -0.1660 

1985-86 -0.1347 1999-2000 -0.1562 

1986-87 -0.1598 2000-01 -0.1719 

1987-88 -0.1510 2001-02 -0.1459 

1988-89 -0.1362 2002-03 -0.1724 

1989-90 -0.1441 2003-04* -0.1691 

1990-91 -0.1579 2005-06* -0.1724 

1991-92 -0.1523 2006-07 -0.1823 

1992-93 -0.1679 2007-08 -0.1785 

1993-94 -0.1303 2008-09 -0.1736 

1994-95 -0.1376 2009-10 -0.1782 

1995-96 -0.1644   

*2004-05 NHL season did not occur because of the lockout 
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 Additionally, the THoR statistic eliminates the impact of teammates when evaluating 

individual player performance. By utilizing a probability-based approach and defining a period 

of influence of twenty seconds, the statistic is able to limit the impact of teammates and 

opponents which makes the statistic’s analysis of individual performance more accurate 

(Shuckers and Curro, 2013).  

Measuring a Teammate’s Impact 

 The impact that teammates have on each other, both on and off the playing field, is 

another important consideration for evaluating players. This impact can be largely attributed to 

knowledge spillover and peer pressure effects. Knowledge spillover occurs when teammates and 

competitors learn from each other and improve their skills as a result of ongoing practice and 

competition while peer pressure effects can cause a player to raise their performance level to 

meet the expectations of the team or to match the efforts given by their teammates. These effects 

make it even more necessary to understand a player’s impact without their teammates to 

determine what their true level of performance contributes to the team’s success. The research 

from Molodchik, et al (2021) investigated 5000 players on more than 230 teams and discovered 

that players on stronger teams perform better than expected. However, stronger teams have a 

diminishing rate of marginal improvement in affecting an individual’s performance. Also, a 

roster with players of varying skill levels is motivating for the less talented players to learn from 

the experienced players and improve their skills quickly. A low percentage of new players 

joining the team is also better for player performance as the need for integrating new players and 

learning how to play with them is limited. Fewer new players require less time helping acclimate 

the new players to the team, so the individual can focus on their own performance. However, a 

higher quality new player is more likely to improve a player’s individual performance as they are 
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able to positively impact the team overall without limiting the team’s learning or growth 

(Molodchik, et al, 2021). 

Considering an Individual’s Impact by Their Team’s Performance in Their Absence  

 Another approach for determining a player’s individual contribution is to analyze the 

team’s performance when the individual is unable to participate. This situation can arise when a 

player is injured or being rested at the end of the season as the team has already clinched a 

playoff berth. In soccer specifically, a player can also not be in the lineup when they are 

representing their home nation in a tournament such as the African Cup of Nations or in World 

Cup qualifying. Typically, only the elite players will be given the honor of representing their 

country, so these select few players will know far in advance when they will be playing for their 

country. This type of absence allows the player’s team to plan ahead for the time when the player 

is away from the club. However, injuries cannot be predicted, so teams are forced to react when 

injuries happen to replace the injured player’s production. This piece of literature uses a multiple 

linear regression to analyze the data concerning these soccer players who participate in the 

African Cup of Nations from the top European soccer leagues, such as the Premier League and 

the Bundesliga League, to determine the significance of losing these players for an extended 

amount of time. The research explains this significance through player quality, team quality, and 

player salary. By running this regression, the author of this piece concludes that these teams 

experience no significant loss from these players participating in the African Cup of Nations as 

many of these soccer clubs have great depth which allows them to easily replace the player 

competing in the tournament. Therefore, this method for evaluating player contribution cannot be 

considered useful based on the findings of Perez’s article. However, this piece only considers 

players absent due to national team appearances and not due to injury, so this area could need 
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more investigation (Perez, 2021). In contrast with top league club teams in soccer that have 

enough depth to combat this scenario, basketball teams are limited to a fewer number of players 

on the roster. In the NBA, each team can only have fifteen players on the roster at a time while 

being limited by the salary cap set by the NBA to maintain a competitive balance across the 

league. The salary cap limits how much talent can be brought to the roster, especially if the team 

has superstar players who are on max contracts (Engler, 2011). Similarly, collegiate teams can 

only have a certain number of players on the roster as these college teams are largely inhibited 

by the number of scholarships that a school can offer, which the NCAA dictates. This scenario 

creates a possible depth issue for these basketball teams as their rosters will have less talent at 

one time, which can limit a team’s ability to combat losing a key player for an extended period 

of time as compared with a top soccer league in Europe (Engler, 2011).  

Performance in Late Game Situations 

When determining a player’s contribution to their team’s success, it is also important to 

consider how that specific player performed in different periods of the game, particularly 

whether their performance improves as the game progresses toward the end of regulation and 

into overtime. As games advance, external and internal pressures can build and impact a player’s 

performance specifically in critical moments which are defined as the last five minutes of 

regulation and any overtime periods (Gomez, et al, 2015). Furthermore, another piece defined 

critical moments as the last two to three minutes of a game with a difference in the game score of 

less than ten points (Ferreira, Volossovitch, and Sampaio, 2014). In comparison, other research 

defines a critical moment to be the last five minutes of regulation and overtime where the score 

is within less than three points (Annis, 2006). These pressures can cause a negative disruption in 

how a player is able to execute basketball actions such as dribbling, passing, and ball-handling. 
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A player is particularly vulnerable to deteriorations in their performance level and decision 

making as stress and pressure build late in the game, which often results in turnovers and poor 

shot selection. Because of increased stress, accumulation of fatigue, increased fouling, and a 

higher frequency of timeouts that occur during the critical moments of a game, coaches must 

prepare appropriate strategies that cater to these critical moments. Through this piece of 

literature, Gomez runs a binomial logistic regression that estimates the regression weights along 

with the impact of a variety of situational variables and game related statistics. The regression 

leads to the conclusion that many box score statistics are less important in the overtime period as 

coaches adjust their strategies to protect the lead and combat player fatigue. Winning teams are 

more likely to have better production in terms of shooting, rebounding, blocks, and steals while 

being less affected by the pressure of the situation or the pressure applied by the other team. On 

the contrary, losing teams are much more affected by the situation and their opponent as they 

commit more turnovers, miss more three-point attempts, and commit more fouls. The regression 

argues that the only significant variables in the overtime period were successful three-point field 

goals, successful free throws, and fouls committed. The regression also posits that home field 

advantage does not exist in the overtime period as the home team is more likely to falter in the 

overtime period as the visiting team has already adjusted to the distractions imposed by the fans 

and the situation (Gomez, et al, 2015).  

A similar pressure buildup occurs in hockey as a more direct impact is exerted by an 

individual player’s performance as a hockey game moves into overtime or shootout as the game 

remains tied. During the 2018-2019 season, the National Hockey League altered the overtime 

format from each team having 4 skaters and a goalie to playing with 3 skaters and a goalie. In the 

shootout period, players from the two teams trade opportunities to score a goal against the other 
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team’s goalie without any other defenders impeding the attempt. Naturally, as the game 

progresses, each player will have a greater impact on the outcome of the game as the increased 

space on the ice allows increased opportunity to make a play with fewer players on the ice. These 

game situations create an opportunity for each player to exert a greater impact on the game’s 

outcome. The overtime period increases the pressure on players in a similar fashion as overtime 

in basketball; however, the decreased number of players leads to an increased amount of 

attention and scrutiny on each player, which is unique to hockey (Hoffman, et al, 2021). 

Foundations of Econometrics 

 When utilizing an econometric approach, the classical econometric assumptions must be 

upheld to validate the model being used. Heteroskedasticity and multicollinearity are two key 

issues that violate these classical assumptions. Heteroskedasticity occurs when the variance of 

the error terms varies with the independent variables, which violates the classical assumption that 

the population errors are constant; Multicollinearity occurs when one variable has a direct linear 

relationship with another variable in its formulation which causes a high level of correlation 

between the variables. Multicollinearity can violate the classical assumption that variables are 

not correlated with each other. Perfect multicollinearity is a particular issue for violating this 

assumption as perfect multicollinearity is the more severe case of multicollinearity and causes 

improper conclusions to be made as two variables have an exact linear relationship 

(Studenmund, 2016). Other literature investigates how to best overcome the issues of 

heteroskedasticity and multicollinearity to properly model the research topic at hand, which will 

be of key importance to my research. In sports, large amounts of data are readily available for 

analysis due to recent advances in technologies such as Global Positioning Systems (GPS) 

(Weaving, et al, 2019). However, dealing with this massive amount of data can be daunting, and 
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this data often has perfect multicollinearity as many of the statistics can be highly correlated to 

each other.  Weaving and his colleagues suggest an approach using Leave One Variable Out, 

Partial Least Squares Analysis (LOVO-PLSCA) that is designed to correct the issue of 

multicollinearity and highlight the most influential variables in determining the fitness level of 

athletes in training by comparing the results of each of the LOVO-PLSCA regressions. The 

LOVO-PLSCA method is immune to the effects of perfect multicollinearity to discover which 

variables are the most influential in modeling the output. The LOVO-PLSCA method helps the 

multiple linear regression avoid the problem of multicollinearity as the method excludes the use 

of variables that have direct linear relationships. This method also utilizes the correct explanatory 

variables, which increases the accuracy of the regression in modeling the fitness scenario 

described in the literature but also in all sports performance scenarios. This study contends that 

an analysis using the Leaving One Variable Out, Partial Least Square regression technique is 

useful in running a more effective multiple linear regression so that the most influential 

explanatory variables are utilized in the model (Weaving, et al, 2019).  

 Another piece of literature attempts to combat multicollinearity by using structure 

coefficients to scale the beta values more appropriately for the regression equation. Beta weights 

alone can often lack reliability as they create the bouncing beta problem which occurs as 

multicollinearity arises. The bouncing beta problem causes the beta values from the multiple 

linear regression to be inaccurate representations as the beta values are pulled in the same 

direction (Henson, 2002). This issue necessitates the use of structure coefficients alongside the 

beta coefficients. The structure coefficients are found through a bivariate correlation between a 

single observed predictor variable and the output variable. This definition avoids the issue of 

perfect multicollinearity as only one dependent variable is regressed against the output, so the 
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variables cannot be defined in terms of each other or have a direct linear relationship. However, 

the structure coefficients are not independent of the other independent variables’ effects despite 

not being directly influenced by the relationships between each independent variable. More 

specifically, the structure coefficients display the extent of the dependent variable’s variance that 

can be explained by a single independent variable, which suggests that the sum of the squared 

structure coefficients together would highlight the breakdown of each independent variable’s 

impact on the variance of the dependent variable. However, a consideration of the beta values 

and the structure coefficients together is important for modeling the situation more accurately to 

avoid inaccurately and unnecessarily increasing the beta values in attempt to model the 

relationship (Yeatts, et al, 2017).  

 Some literature also tackles the issue of heteroskedasticity when utilizing multiple 

regression models. Heteroskedasticity occurs when the variance of the population errors is not 

constant; this issue causes a violation of the classical econometric assumptions which will cause 

the slope of the regression line to be inaccurate in estimating the relationship between the 

independent variables and the dependent variable (Studenmund, 2017). In the NBA, 

heteroskedasticity occurs as the strength of the team varies with an increase in the number of 

games. Their ranking compared to the rest of the league fluctuates throughout the season which 

creates heteroskedasticity as their strength is not constant as the year goes on. This piece relaxes 

the constraint of a constant variance error to model team strength with Sik = β + eik where β is the 

constant component of team strength, and the error team is normally distributed for team k in 

year i. This definition allows for a higher level for the variance which implies a more volatile 

performance level for each NBA team. This high volatility can be negatively influenced by 

issues in scheduling such as playing games on back-to-back nights and benefitting from playing 
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on their home court in front of the team’s fans. This model evaluates the NBA performance level 

over multiple seasons to determine if heteroskedasticity influences the estimation of a team’s 

strength and their ranking relative to the rest of the teams in the NBA. However, the analysis 

finds only weak evidence of heteroskedasticity as home court advantage only causes an increase 

of 2.7 points whereas playing on back-to-back nights costs teams 1.8 points. The study also 

determines that these point variances happen to successful and unsuccessful teams alike. 

Additionally, some volatility occurs due to injuries during the season, but these fluctuations are 

much less predictable and not as easily fit into the model (Manner, 2016).  

Other Econometric Models  

 Other research aims for a similar goal using similar methods as my thesis, which is a 

direct measurement of player productivity to determine which players are truly the most pivotal 

to their team’s success. The most significant piece of work in this area presents an econometric 

model that connects player production to wins created based upon the player’s accumulation of 

certain key statistics, including offensive rebounds and assists. This model creates a more 

accurate representation of player value to replace outdated awards, such as the IBM award, that 

claim to be more objective than they actually were; similar models represent this measure as a 

summation of a player’s positive statistics minus the summation of their negative ones, even if 

basketball does not always happen in such a binary fashion. This literature runs a regression of 

defensive turnovers created, defensive rebounds, defensive points allowed, number of turnovers, 

points per possessions, free throws attempted, free throws made, and offensive rebounds to 

model player production. According to this research, offensive rebounds are considered to have 

the greatest impact with three-point field goals made being a close second. Additionally, ball 

handling has extreme importance as turnovers by either team have a great impact on the outcome 
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of all games. Furthermore, efficient shooting is more important than scoring a higher total 

number of points, particularly if a large number of shots is needed to achieve the high point total. 

Therefore, a player’s ability to produce more wins is largely dependent on the ability to acquire 

and keep possession of the ball while consistently making field goals, which largely translates to 

an accumulation of rebounds, avoiding turnovers, and shooting efficiency. To properly account 

for a player's production, the literature analyzes per-minute player production, per-minute team 

tempo factor, and per-minute team defense by accumulating each of the variables included in the 

regression.   

Per-minute production (PM) = accumulation of each statistic/ Total minutes played     (11) 

This factor attempts to quantify how productive a player is per minute, which will be easily 

comparable between players.  

Per-minute team tempo factor (TF) = (Team FGA * -0.023 + Team FTA * -0.009)/ Total 

minutes played                                                        (12) 

Team FGA represents team field goal attempts while Team FTA represents team free throw 

attempts. This aspect looks at how many possessions a player’s team has per minute to determine 

how production is affected by their team’s pace. 

Per-minute team defense (TDF) = accumulation of defensive statistic/ Total minutes played (13) 

This factor specifically looks at summing the defensive statistics to accurately determining the 

player’s impact on the defensive side of the ball.  

Wins produced = (PM + TF + TDF – PA+ TA) * total minutes played                 (14) 

 In Equation (14), PA represents average per minute production at position, which allows the 

function to determine how a player’s per minute production compares to the average production 

for their position. Also in Equation (14), TA represents an average player’s per-minute 
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production, which allows the win production function to fully evaluate all player’s contributions 

in comparison with one another. At the conclusion of this piece of literature, an analysis of the 

1997-1998 NBA season applies the findings of the research to determine which player should 

have been should have been selected as the Most Valuable Player. Surprisingly, this analysis 

results in Dennis Rodman, not Michael Jordan and Karl Malone who were the top MVP 

candidates from that season, being highlighted as the most valuable player to his team due to the 

impact that his offensive rebounding prowess provided (Berri, 1999).  

My Original Contribution: 

To properly build a model accurately evaluating player performance in collegiate basketball, I 

utilize a population regression line, abbreviated as PRL, to predict a player’s contribution to their 

team’s success based on several key statistics. The variables included in the original specification 

of the model are shown in Table 2 below.   

Table 2: Description of Variables 

Variable Abbreviation Description  

Turnovers Per 100 

Possessions 

TO / 100 Poss  Number of Turnovers 

committed in 100 possessions 

Individual Stops Individual Stops Number of Stops that a player 

individually contributes 

Free Throw Percentage FT% Success rate in making free 

throws 

Offensive Rating ORtg The number of points scored 

per 100 offensive possessions 

Defensive Rating DRtg The number of points allowed 

per 100 defensive possessions 

Defensive Rebound 

Percentage 

DREB% The percentage of defensive 

rebounds that a player secures 

Stop Percentage Stop% The percentage of possessions 

that a player prevents an 

opponent from scoring 

Effective Field Goal 

Percentage 

eFG% Success rate in making shots 

while weighting shots 

according to their point value 
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These variables allow me to fully analyze player performance with an increased emphasis on the 

defensive aspect of the game through the inclusion of the Individual Stops and Stop% variables. I 

utilize hypothesis testing to investigate how the success of these variables to output a player’s 

WAR value. The players with the highest WAR values will be selected to the all-conference 

teams for their respective season with the player with the highest WAR value being selected as 

the conference player of the year. The initial specification of the PRL is shown in Equation (15) 

below.  

WAR= β0 +β1 * TO/100 Poss + β2 * Individual Stops + β3 * FT% + β4 * ORtg + β5 * DRtg + 

β6 * DREB% + β7 * Stop% + β8 * eFG%                                  (15) 

The individual stops statistic is not typically considered in basketball analytics, so several aspects 

of this statistic had to be estimated within my analysis. The Individual Stops statistic is shown in 

Equation (8) earlier in the paper. An important aspect of calculating the Individual Stops statistic 

is calculating how many turnovers a player individually causes. This calculation for turnovers 

caused is estimated in my analysis as shown in Equation (16) below: 

FTO = (STL%+BLK%) * Team FTO                                        (16) 

To better represent a player’s individual turnovers forced in Equation (16), STL% represents the 

percentage of possessions that a player steals the basketball from the other team. Likewise, 

BLK% represents the percentage of possessions that a player blocks an opponent’s shot. Team 

FTO represents the total number of turnovers that a team causes for their opponent within a 

season. Next in Equation (8), FFTA is represented by Equation (17) below.  

FFTA = (OPP total missed FT) * (minute played %) / 10                             (17)  

The FFTA value approximates the number of missed free throws that a player is directly 

responsible based on the total free throws missed by opposing teams and the player’s time on the 
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court. The FFTA values is divided by 10 to distribute the impact of the missed impact between 

an estimated 10 rotation players. This statistic is also not typically recorded in basketball 

analytics, so the value of FFTA must be estimated to determine the Individual Stops variable. 

The next aspect of Equation (8) that needs to be understood is forced misses, which is 

represented by FM.   

 FM = Total OFGM * (minutes played %) / 5                                  (18) 

Total OFGM represents the total number of shots that missed by the opponent. This figure is 

adjusted by the minutes played percentage and divided by five to isolate the number of misses 

that a singular player causes among the five players on the court at one time. Forced miss weight, 

represented FMwt, was shown earlier in the paper in Equation (9) to estimate the percentage of 

shots missed as a result of a player’s defensive impact that increases the opponent’s difficulty of 

shots taken. The statistics used to calculate FMwt are also useful in calculating Individual Stops. 

Returning to Equation (15), a higher ORtg would suggest higher offensive prowess while a 

higher DRtg would highlight a player as a defensive liability. The Stop% statistic determines 

how many misses a player helped cause by determining the number of possessions that a player 

was on the court. Much like Individual Stops, Stop% is not a widely used statistic, which causes 

the measure is not heavily reported or calculated. In this paper, the statistic is estimated as shown 

in Equation (19) below.  

Stop% = Total OFGM * (minutes played %) / Total Opp Poss                       (19) 

The final variable from Equation (15) is eFG% variable, which is calculated with Equation (20) 

below. 

eFG% = (Field Goals + (0.5 + 3pt Field Goals)) / Field Goal Attempts           (20) 
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This variable weighs a player’s shooting to more accurately reflect the point value of the shots 

taken. This proportion allows shooting a 2-point field goal to have the same impact on field goal 

percentage as a 3-point field goal by weighing 3-point field goals more to reflect being worth 

more points.  

This proposed model, as shown in Equation (15), utilizes variables that are readily 

available statistics in basketball analytics with the exception of the Individual Stops and Stop% 

variables. The integration of these under-utilized variables allow for an increased emphasis on 

the defensive side of the game as their use in basketball analytics is uncommon given their 

exclusivity to Dean Oliver’s book Basketball on Paper: Rules and Tools for Performance 

Analysis as exhibited earlier in the Literature Review.  

Regressions and Analysis 

My analysis examines ten years of ASUN conference player data as found on Basketball 

Reference to construct a regression-based model that determines the true impacts of the variables 

included in the original model in Equation (15). In conjunction with the WAR variable that was 

outlined in the literature review, these variables are used to create a more accurate and effective 

model to measure the performances of the top players in the ASUN to better select players to the 

all-conference teams with an increased emphasis on the defensive aspects of basketball. In 

creating my model, I established a restriction that players must play more than half of their 

team’s available minutes so that only the truly influential players would be discussed within the 

model’s analysis. An inclusion of players who do not meet this criterion would decrease the 

model’s ability to analyze player performance. Many players only play when the game’s 

outcome is already decided, so it would be inappropriate to include these players in the analysis 

as their influences would be inflated and inaccurate based on their limited court time. In a typical 
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season, a team usually has three to six players who played more than 50% of their team’s 

minutes. With eight to twelve teams in the league each year, a typical season would have 

approximately 40-50 players in consideration for all-conference selection by the model. In total, 

440 players were analyzed over a ten-year period. Because my analysis examines ten years of 

data, I believe that six years would be an appropriate number of seasons to begin testing if each 

of the proposed variables were significant in determining a player’s WAR value. This 

determination is made through hypothesis testing by comparing if the variable’s probability to a 

given level of alpha. A variable is significant at a specific level of alpha if the variable’s 

probability value is less than that level of alpha such that a lower level of alpha indicates a higher 

level of significance. A given level of alpha indicates the level of influence that a variable has in 

calculating the output value of the model with a lower level of alpha communicating a higher 

level of significance. Another consideration for the explanatory power of the model is the R2 

value which communicates the model’s ability to determine how consistently the output from the 

independent variables matches the values used as the dependent variable in the regression. The 

R2 value is a measure of goodness of fit for the model. Additionally, the adjusted R2 value alters 

the R2 value to correct for multiple independent variables. The results for the first 6 years of data 

are shown in Table 3. 
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Table 3: Model Iteration 1 with 6 years of data 

6 years of data Adj R2 = 0.674651 N=242 F value=2.73E-54 

Variable Coefficient 

Probability value 

(P-value) 

Alpha level of 

significance  

TO/100 poss 0.097738 0.630 Insignificant 

Indiv Stops 0.117399 7E-06 α= <1% 

FT% 5.294986 0.019 α= 2% 

ORtg 0.155079 5E-07 α= <1% 

DRtg -0.273771 5E-14 α= <1% 

DREB% -0.26174 0.958 Insignificant 

Stop% 28.41361 2E-09 α= <1% 

eFG% 23.45982 5E-06 α= <1% 

It is important to note that scientific notation will be represented with an E as shown in Table 3 

where 2.73E-54 represents 2.73 x 10-54. Based on the results in Table 3 after 6 years, my model 

has an adjusted R2 =0.674651 which suggests that the data and its output fits within the expected 

value for model 67.4651% of the time. To determine the joint significance of my model, I utilize 

the F test.  

Ho: β1= β2= β3 = β4= β5= β6= β7 = β8= 0 

Ha: At least one of β1, β2, β3, β4, β5, β6, β7, β8 ≠ 0 

Because 2.73E-54< α= <1%, I reject the null hypothesis and accept the alternative hypothesis at 

α = <1%. This conclusion means that the independent variables are jointly significant at α= <1%. 

Therefore, at least one of the slopes does not equal 0. This significance communicates that the 

variables work well together to explain the output of the model. A similar hypothesis test is 

applied to each of the independent variables.  

Null hypothesis (Ho): βi = 0  

Alternative Hypothesis (Ha): βi ≠ 0 

Each hypothesis test is applied to determine each variable’s significance as i represents which 

variable is being tested. In this analysis, i can range from one to nine. To test for the level of the 
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significance, various levels of alpha are applied to the p-value of each variable as the variable 

becomes significant at the level of alpha where the p-value has a smaller value than the specified 

level of alpha. A lower alpha level suggests a higher level of significance for the variable in 

modeling player performance accurately. The highest acceptable level of alpha that is significant 

is α= 20%, and variables whose p-values are larger than α= 20% are considered insignificant and 

should be removed from the model as that variable would inaccurately model player 

performance. The results of these hypothesis tests are shown in Table 3.  

After regressing 6 years of data, the variables Individual Stops, ORtg, DRtg, Stop%, and 

eFG% all had p-values that were significant at α= <1%, which suggests that these variables are 

highly influential in determining a player’s WAR value for my model. The FT% variable was 

significant at the α = 2% which is still quite significant in determining the WAR value for 

players but less significant than the variables significant at α= <1%. However, the variables TO/ 

100 possessions and DREB% were highly insignificant which makes the variables 

inconsequential in calculating a player’s WAR value in the model as the variables have a p-

values of 0.630 and 0.956, respectively, so I am going to remove the variables from the model at 

least for now. These methods of hypothesis testing will be key for my analysis in determining the 

significance of each variable independent of the other variables while also testing the joint 

significance of the variables. The theory of these tests will be applied to later iterations of the 

PRL, but the tests will not be explicitly shown in the analysis as only their results will be 

discussed. After removing TO/ 100 Poss and DREB%, the new PRL becomes: 

WAR= β0 + β1 * Individual Stops + β2 * FT% + β3 * ORtg + β4 * DRtg + β6 * Stop% + 

 β7* eFG%                                                                        (21) 
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After removing the insignificant variables, I included additional variables in the model to uphold 

the model’s explanatory power and ensure that I did not have too few variables. Therefore, I 

added variables for a player’s total turnovers in a season, represented by TO, a player’s total 

assists for the season, abbreviated as AST, and their total offensive rebounds for the season, 

shown as OREB. After adding in the new variables, the PRL becomes:  

WAR= β0 + β1 * Individual Stops + β2 * FT% + β3 * ORtg + β4 * DRtg + β5* Stop% +  

 β6* eFG% + β7 * TO + β8 * AST + β9 * OREB                                    (22) 

I believed that adding these were influential statistics that determined a player’s impact on the 

game, so I ran another the regression with 6 years of data to determine the impact of these 

additional variables on the model with the results shown in Table 4.   

Table 4: Model Iteration 2 with 6 years of data 

6 years of data R2 =0.687499 N=242 F value = 8.01E-57 

Variable Coefficient P-value 

Alpha level of 

significance 

Indiv Stops 0.118478 1.131E-05 α= <1% 

FT% 5.961289 0.013248 α= 2% 

ORtg 0.108534 0.000504 α= <1% 

DRtg -0.29525 6.26E-17 α= <1% 

Stop% 18.43162 1.89E-05 α= <1% 

eFG% 28.63112 1.57E-08 α= <1% 

TO -0.01817 0.236929 Insignificant 

AST 0.031067 0.000176 α= <1% 

OREB 0.004495 0.727585 Insignificant 

After running this regression, the adjusted R2 value increased to 0.687499, which suggests that 

the addition of the turnovers, assists, and offensive rebounds variables improved the validity of 

the model. The model now has a 68.7499% fit for predicting the model’s output which is in an 

increase in value from the previous value of 67.4651%. Additionally, the F value decreased to 

8.01E-57 which suggests that the variables are now more jointly significant than the previous 

iteration of the model given the increased distance from the α= <1% value for the F test. The 



  Seely 36 

 

variables Individual Stops, ORtg, DRtg, Stop%, and eFG% remain individually significant at an 

alpha value of less than 1% which suggests that these variables are highly influential in 

determining a player’s WAR value in my model. The FT% variable remained significant at the 

alpha equal to 2% which is remains significant in determining the WAR value for players but 

less significant than the first variables significant at less than 1%. The newly introduced TO 

variable was not significant at any levels of alpha as the variable has a p-value of 0.236929 

which suggests that the variable has limited impact on player impact in this iteration of the 

model. Despite the lack of significance for the TO variable, I left the variable in the model for 

the time being given the high theoretical relevance of turnovers in determining a player’s impact 

on the game. The AST variable had a p-value of 0.000176 which means that the variable is 

highly significant in explaining player performance at an alpha level of less than 1%. As the 

OREB variable is introduced, the variable has a p-value of 0.727585. This high p-value suggests 

that the variable has minimal impact on player performance. Because of a lacking impact and 

statistical insignificance for the OREB variable, I took OREB out of the model. After the OREB 

variable was removed, the PRL becomes:  

WAR= β0 + β1 * Individual Stops + β2 * FT% + β3 * ORtg + β4 * DRtg + β5* Stop% +  

 β6* eFG% + β7 * TO + β8 * AST                                             (23) 

After adapting the PRL as shown in Equation (23), I added an additional two years of data to my 

regression to supplement the analysis. The results for the eight-year regression are shown in 

Table 5.  
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Table 5: Model Iteration 3 with 8 years of data 

8 years of data Adj R2 = 0.613932 N=336 F value = 9.33E-65 

Variables  Coefficient P-value Alpha Level of 

Significance 

Individual Stops 0.177026 6.96E-14 α= <1% 

FT% 3.26939 0.108127 α= 11% 

ORtg 0.135131 1.18E-05 α= <1% 

DRtg 0.006679 0.105506 α= 11% 

Stop% 23.33236 1.19E-07 α= <1% 

eFG% 30.48836 8.74E-10 α= <1% 

TO -0.02823 .045894 α= 5% 

AST 0.026802 8.64E-05 α= <1% 

After 8 seasons of data, the model has an adjusted R2 =0.613932 which suggests that the model 

has a 61.3932% ability to forecast the relationship between the input variables to output the 

output variables. This decrease is a bit concerning as the fit of the model has decreased by 

approximately seven percent, but the additional data is meant to help smooth out the data’s 

variability throughout the eight seasons to determine which players are truly the most influential 

and most worthy of an all-conference team selection. In contrast, the F value of this iteration is 

9.33E-65 which is a smaller value than the previous version of the model. This decrease suggests 

that the variables in the model are more jointly significant than previously with the same α= 

<1%. The variables for Individual Stops, ORtg, Stop%, eFG% and AST are significant at α= 

<1%, which suggests these variables are highly influential in determining player performance 

and impactful on team’s success. The TO variable was significant at an α= 5%, which suggests 

that the variable is influential in determining a player’s performance level but less impactful than 

the variables that were significant at an α <=1%. The significance of the TO variable confirms 

my decision to leave the variable in the model given its theoretical relevance as the variable is 

now statistically significant as well. The variables for Free Throw percentage and DRtg were 

only significant at an alpha level of 11% which suggests some influence on player performance 
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but certainly less impact than the variables significant at both the α <=1% and α = 5%. This trend 

is somewhat concerning as the variables have become much less significant than the previous 

iterations of the model, so the downward trend of these variables is worth monitoring. Because I 

did not remove or add any variables, the PRL remains the same as shown in Equation (23), so I 

proceed in adding the final two years of data to complete my analysis of the ASUN conference 

data. Table 6 below shows the results of the regression for the ten-year data set.  

Table 6: Model Iteration 4 with 10 years of data 

10 years of data R2 = 0.610481 N=440 F value = 4.44E-85 

Variables  Coefficient P-value Alpha level of 

significance 

Individual Stops .157231 7.98E-18 α= <1% 

FT% .487441 0.331557 Insignificant 

ORtg .188754 1.95E-12 α= <1% 

DRtg .004863 0.243251 Insignificant 

Stop% 21.52845 9.01E-08 α= <1% 

eFG% 24.64479 3.04E-08 α= <1% 

TO -0.0112 .364097 Insignificant 

AST 0.02245 0.000185 α= <1% 

After 10 years of data, the adjusted R2 value has decreased even further to 0.610481, which 

communicates the model has a 61.0481% ability to accurately utilize the input variables to model 

player performance through the WAR statistic. This subsequent decrease is a bit concerning as 

the model’s predictive power has decreased modestly within the last two iterations of the model. 

However, I attribute these decreases to increasing the data set which was expanded to avoid 

issues of variability from a sample size that is too small and does not reflect the variances in 

performance between players across the seasons within this ten-year period. The F value has 

further decreased to a value of 4.44E-85 which signifies that the variables are even more jointly 

significant than the previous versions of the model. The Individual Stops, ORtg, Stop%, eFG%, 

and AST variables remain significant at α= <1%, which suggests that these variables remain 
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highly influential in modeling player performance within the model. I noticed a marginal 

increase in the p-value for the AST variable. This change suggests that the variable’s influence 

has slightly decreased, which is a concerning trend that merits further attention. The FT%, DRtg, 

and TO variables have all become statistically insignificant as the variables have higher p-values 

than any acceptable levels of alpha that suggest the variables as having a significant impact on 

player performance within the model. Because of this lacking impact, I considered removing 

these variables from the model. Before removing the insignificant variables from the model, I 

attempted to systematically remove these variables to determine if any of them actually had an 

individually significant impact on the model despite an insignificant p-value. The result of these 

removals is shown in Table 7.  

Table 7: Removing FT%, TO, DRtg, Sequentially 

 All 3 variables 

still in the 

model 

After 

removing FT% 

- DRtg and TO 

still in 

After 

removing TO, 

only DRtG 

remains  

All 3 removed  

Adj R2  0.610481 0.610531 0.610793 0.610435 

P-values 

FT% 0.331557 N/A N/A N/A 

TO 0.243251 0.400451 N/A N/A 

DRtg 0.364097 0.244973 0.237408 N/A 

As shown in Table 7 above, removing these variables from the model was the correct decision as 

the variables never became statistically significant even as the variables were removed one at a 

time despite a fluctuating adjusted R2 value. Once these variables were removed, the updated 

PRL is shown in Equation (24). 

WAR= β0 + β1 * Individual Stops + β2 * ORtg + β3* Stop% + β4* eFG% + β5 * AST (24) 

Table 8 displays the results of the latest regression after removing the insignificant variables.  
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Table 8: Model Iteration 5 with 10 years of data 

10 years of data Adj R2 =0.610435 N=440 F-value = 1.4E-87 

Variables Coefficients  P-values Alpha Level of 

Significance 

Individual Stops 0.148553 2.6E-19 α= <1% 

ORtg 0.204173 9.11E-18 α= <1% 

Stop% 21.17773 5.85E-08 α= <1% 

eFG% 23.15632 6.15E-08 α= <1% 

AST 0.019477 6.06E-05 α= <1% 

Even though removing these variables from the model was the correct theoretical decision, I was 

concerned with the model’s ability to correctly forecast player production with so few variables 

which creates an inaccurate representation of each statistic’s ability to impact a player’s 

contribution to their team’s success. This concern was amplified by another decrease in adjusted 

R2, which communicates a problem in the model’s predicting power. The variables that remain 

are all significant at α= <1%, which suggests that all of these statistics are highly influential in 

determining player performance. However, these influences could be overstated given the 

current lack of variables in the model. After this consideration, I began considering other 

variables that could be defining measures of success within college basketball to include in the 

model. Because of the theoretical influence of defensive rating and free throw percentage in 

determining a player’s influence on his team’s success, I decided to reexamine my data to look 

for any incorrectly entered data that would hinder the potential for these variables to be 

significant. I was extremely surprised to actually find two instances of data entry errors: a DRtg 

was intended to be 95.8 but was listed as 958 while another player incorrectly had a zero percent 

free throw percentage. After reincluding the DRtg and FT% variables, the updated PRL appears 

in Equation (25) below.  

WAR= β0 + β1 * Individual Stops + β2 * ORtg + β3* Stop% + β4* eFG% + β5 * AST +   

β6* DRtg + β7 * FT%                                                       (25) 
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I ran another regression using the PRL shown in Equation (25) to determine the effects of this 

discovery as shown in Table 9 below.  

Table 9: Model Iteration 6 with 10 years of data 

10 years of data Adj R2 =0.714458 N=440 F value = 7.7E-115 

Variables  Coefficient P-value Alpha Level of 

Significance 

Individual Stops 0.102452 4.35E-11 α= <1% 

FT% 5.451494 0.000827 α= <1% 

ORtg 0.175948 5.65E-16 α= <1% 

DRtg -0.30385 7.05E-30 α= <1% 

Stop% 17.13219 4.76E-07 α= <1% 

eFG% 21.91347 4.46E-09 α= <1% 

AST 0.020838 6.69E-07 α= <1% 

This regression documents the large impact that one data entry error had on my model as the 

adjusted R2 value increased to 0.714458. Re-including these variables increased the model’s 

accuracy by approximately 10%. Additionally, these extra variables are highly significant at an 

α= <1%, which means that these variables are highly influential in measuring player 

performance. I was hopeful that reincluding these variables would be significant to the model’s 

formulation, but I did not expect this level of significance for each of the reincluded variables or 

the associated increase in adjusted R2 value. Additionally, the F value has decreased to 7.7E-115 

which highlights the strength of the variables working together within the model given this high 

level of joint significance. This iteration was a great step forward for properly measuring player 

performance, but the current model has 4 offensive variables, FT%, ORtg, eFG%, and AST, and 

3 defensive variables, Individual Stops, DRtg, and Stop%. I intended for my model to have an 

increased defensive emphasis, but this current formulation is too heavily weighted toward the 

defensive aspect of the game. Because of this desire for increased offensive variables within the 

model, I attempted to include Total Rebounds, represented as TRB, and reintroduce turnovers 

per 100 possessions, shown as TO/100 Poss, due to the important theoretical relevance of these 
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statistics to help players exert an impact on the game. These inclusions change the PRL as shown 

in Equation (26).  

WAR= β0 + β1 * Individual Stops + β2 * ORtg + β3* Stop% + β4* eFG% + β5 * AST +  

 β6* DRtg + β7 * FT% + β8* TRB + β9 * TO/ 100 Poss                       (26) 

The results of these inclusions are shown in Table 10.  

Table 10: Model Iteration 7 with 10 years of data 

10 years of data R2 = 0.714849 N=440 F value=3.4E-113 

Variables  Coefficient P-value Alpha Level of 

Significance 

Individual Stops 0.103441 1E-08 α= <1% 

FT% 6.6068797 0.00479 α= <1% 

ORtg 0.152039 6.16E-09 α= <1% 

DRtg -0.3042 1.24E-29 α= <1% 

Stop% 15.92705 7.59E-06 α= <1% 

eFG% 23.83721 1.71E-09 α= <1% 

AST 0.024799 4.27E-07 α= <1% 

TRB 0.002103 0.548699 Insignificant 

TO/100 Poss -0.25742 0.110745 α= 12% 

This newest inclusion actually increases the model’s ability to explain the relationship between 

the input variables and the output to an adjusted R2 =0.714849. In contrast, the F value decreased 

slightly from the last iteration. However, this decrease is largely irrelevant given the relatively 

small number as the value remains highly significant using an α= <1%. With the inclusion of the 

new variables, the rest of the variables did become slightly less significant than the previous 

iteration. Much like the F value, these changes were largely unimportant in the context of the 

model as these values remain quite separated from the alpha value of 1%. However, the TRB 

variable had a p-value of 0.548699, which suggests that the variable is insignificant in modeling 

player performance as the p-value is not close to any accepted values of alpha that would make 

the variable significant. Given the large amount of data analyzed in the model, I made the 

decision to remove the TRB variable from the model. The TO/100 Poss variable was significant 
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at an alpha level of 12%. This level of significance suggests an influence on the model, but this 

variable does not exert the same influence as the other variables that are more significant at 

lower levels of alpha. The new PRL is shown in Equation (27) below.  

WAR= β0 + β1 * Individual Stops + β2 * ORtg + β3* Stop% + β4* eFG% + β5 * AST +  

 β6* DRtg + β7 * FT% + β8* TO/ 100 Poss                                     (27) 

Table 11 shows the results of the regression taken after the TRB variable is removed so that the 

PRL is modeled by Equation (27).  

Table 11: Model Iteration 8 with 10 years of data 

10 years of data R2 = 0.715273 N=440 F value = 3.4E-114 

Variables  Coefficient P-value Alpha Level of 

Significance 

Individual Stops 0.108401 1.52E-11 α= <1% 

FT% 5.728274 0.000477 α= <1% 

ORtg 0.155131 1.46E-09 α= <1% 

DRtg -0.30573 3.53E-30 α= <1% 

Stop% 16.51958 1.35E-06 α= <1% 

eFG% 23.8129 1.72E-09 α= <1% 

AST 0.023892 3.23E-07 α= <1% 

TO/100 Poss -0.2325 0.035639 α= 4% 

This iteration of the model has a slight increase in the adjusted R2 value as the value increased to 

0.715273. However, this change is very small which suggests that removing the TRB variable 

was the correct decision as the variable does not have a noticeable impact. This removal upholds 

the model’s ability to explain the relationship between variables at a rate of approximately 

71.5%. The F value also slightly decreases. This decrease means that the variables are more 

jointly significant than the previous version of the model which suggests that this combination of 

variables is more effective in explaining the changes in player performance. With the exception 

of the TO/100 Poss variable, all variables are significant at an alpha level of less than 1% which 

suggests that these statistics are highly determinant in describing what causes high levels of 
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player performance. In contrast, the TO/100 Poss variable is only significant at an alpha level of 

4%, which suggests that this variable does have an important influence on player performance 

but not as influential as the other variables. Given this higher level of alpha, I considered 

removing the variable, but I felt that this variable has theoretical importance. Additionally, this 

variable is statistically significant, albeit less so than the other variables, which merits the 

inclusion of the variable given the size of the data sample that is analyzed. I was surprised that 

this variable became significant after ten years of data given its insignificance after six years. I 

believe this result supports the need for a larger sample size to smooth out any possibility for 

increased variability.  

As mentioned previously in the paper on page 23, multicollinearity and heteroskedasticity 

are two key issues that could alter my model’s ability to properly estimate the influences of the 

variables in the model. Recall from earlier in the paper, multicollinearity is one variable having a 

direct linear relationship with another variable in its formulation which causes a high level of 

correlation between the variables. This issue is an important consideration for my model as 

multicollinearity could cause the variables in the model to inaccurately represent the true impact 

in determining which variables were essential to properly evaluate player performance to 

highlight top performers. There are two methods of testing for multicollinearity, which are a 

correlation matrix and variance inflation factors, or VIFs. A correlation matrix highlights the 

relationship between each pair of variables within the model. Commonly, a value of 0.7 or 

greater is considered evidence of multicollinearity. The correlation matrix used to test for 

multicollinearity is shown in Table 12. 
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Table 12: Correlation Matrix  

  

Indiv 

Stops ORtg DRtg Stop% eFG% AST FT% 

TO/ 

100 

poss 

Indiv 

Stops 1        
ORtg 0.14987 1       
DRtg -0.3790 -0.16758 1      
Stop% 0.01782 0.139484 -0.0433 1     
eFG% 0.19097 0.72198 -0.2071 0.0103 1    
AST 0.00607 0.08956 0.03680 0.3858 -0.12407 1   
FT% -0.2546 0.31632 0.10647 0.2658 0.066064 0.207778 1  
TO/ 100 

poss 0.1729 -0.42667 -0.0448 -0.0174 -0.17766 0.27955 -0.1315 1 

In Table 12, the only pair of variables with a correlation value of 0.7 or greater is eFG% and 

ORtg. Fundamentally, this finding makes sense as effective and efficient shooting leads to a 

higher offensive rating. However, I want to eliminate severe multicollinearity within this model, 

so this development is somewhat concerning. To fully determine the extent of the 

multicollinearity, I analyzed the VIFs for each variable to determine the true presence of 

multicollinearity within the model. This analysis is achieved by regressing the independent 

variables against one another while rotating which independent variable is considered as the 

output of the model. The R2 value for each of these regressions is used to calculate VIF by the 

following equation: 

VIF = 1/ (1- R2)                                                               (28) 

In this context, a VIF value of greater than 5 exhibits the presence of severe multicollinearity. 

Lower VIF values suggest that multicollinearity is not present within the model. These VIF 

findings is shown in Table 13.  
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Table 13: VIFs 

Variable R2 value when considered the 

response variable 

VIF value 

Individual Stops 0.275442 1.380151 

ORtg 0.734388 3.764892 

DRtg 0.169838 1.204584 

Stop% 0.205203 1.258183 

eFG% 0.625029 2.666873 

AST 0.363051 1.569985 

FT% 0.287067 1.402656 

TO/ 100 Poss 0.423917 1.73586 

As shown in Table 13, none of the VIF values are greater than 5 which suggests that 

multicollinearity is not present in the model. Despite the high correlation value between eFG% 

and ORtg as shown in the correlation matrix, I believe that this relationship is definitional and 

does not require further attention. Because of this result, I conclude that multicollinearity is not 

an issue within the model.  

Another issue that prevents econometric models from being accurate is 

heteroskedasticity. Recall from earlier in the paper, heteroskedasticity occurs as the variance of 

the error terms varies with the independent variables which violates the classical assumption that 

the population errors are constant. Heteroskedasticity could affect my model by causing the 

variables to inaccurately measure the key statistics that I have outlined. To determine the effects 

of heteroskedasticity, the two tests typically used are the Park Test and the White Test. To use 

the Park Test, the residual values of the regression are found by the Equation (29) below. 

Residual value = ei = expected output from the data pointi – actual output                (29) 

 After finding these residual values, these values are squared and then the natural log of 

the squared values is taken, represented as ln(ei
2). Additionally, the natural log is taken of each of 

the independent variables. Then, the natural log of the residual values is regressed against each 
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of the natural log of the independent variables individually to determine the effects of 

heteroskedasticity. The results of the Park Test are shown in Table 14 below.  

Table 14: Park Test Results 

LN (variable) R2 P-value 

LN(Individual Stops) 0.001866 0.36596 

LN(ORtg) 0.000304 0.715345 

LN(DRtg) 0.001758 0.380299 

LN(Stop%) 0.002546 0.290958 

LN(eFG%) 0.001114 0.484939 

LN(AST) 0.000113 0.824287 

LN(FT%) 2.22E-09 0.999214 

LN(TO/100 Poss) 0.001109 0.485877 

Table 14 shows the regressions between the natural log of the squared residuals do not have a 

strong relationship with any of the natural logs of the independent variables. The extremely low 

R2 values show that these regressions have a poor fit. Additionally, the high p-values are far from 

any accepted levels of alpha that leads to the conclusion that heteroskedasticity is not present 

which upholds the assumption that the population errors are constant within the model. To 

ensure that heteroskedasticity is not present in the model, I also applied the White Test to my 

model. The White Test regresses the squared errors, ei
2, against the independent variables of the 

model, the products of the independent variables, and the squares of the independent variable 

terms. Because I have so many independent variables, I utilize a truncated version of the White 

Test that includes the independent variables with the highest possibility for heteroskedasticity, 

albeit none of the variables showed evidence of heteroskedasticity, from the results of the Park 

Test. The variables included in this truncated White Test are Individual Stops, DRtg, and Stop%. 

This application of the White Test is shown in Equation (30) below.   

e2 =β₀ +β₁ * Indiv Stops + β₂ * DRtg + β3 * Stop% + β4 * (Indiv Stops * DRtg) + β5 * (Indiv 

Stops * Stop%) + β6 * (DRtg * Stop%) + β7* (Indiv Stops)2 + β8 * (DRtg)2 * β9 (Stop%2)   (30) 
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After running this regression with n =440 observations, this model had an R2 value of 0.070919. 

In the White Test, the decision statistic, χ², is calculated by n* R2. In this regression, the value of 

n R2= (440) * (0.070919) = 31.20436. The highest published value in the Chi-square distribution 

table is at an α= 1% and 100 degrees of freedom has an associated Chi-square value of 135.81, 

so my data has n = 440 observations with 439, which is n -1, degrees of freedom which suggests 

that the Chi-square value would be significantly higher than 135.81. Because my calculated Chi-

square value is 31.20436 which is significantly less than 135.81, I conclude that 

heteroskedasticity is not present within the model by the White Test. This discovery further 

shows that heteroskedasticity does not have an effect on my model.  

 After analyzing multicollinearity and heteroskedasticity, the final PRL remains the same 

as shown in Equation (27). Substituting the coefficients from Table 10 into the final PRL, the 

completed model is presented in Equation (31) below. 

WAR = -7.18901 + 0.108401* Individual Stops + 5.728274 * FT% + 0.155131 * ORtg +                  

(-0.30573) * DRtg + 16.51958 * Stop% + 23.8129 * eFG% + 0.023892 * AST +                       

(-0.2325) *TO/ 100 Poss                                                         (31) 

Equation (31) displays the role that each variable in the model has in more accurately modeling 

player performance within the ASUN Conference to better select the all-conference teams.  

After constructing the model from running regressions to analyze ten years of ASUN 

conference data, I utilized Microsoft Excel to determine the ten players each year who had the 

largest WAR values as calculated by my model. After determining the top performing players for 

each year, I compared these findings to the players that were originally selected by the coaches 

and media of the ASUN conference to the all-conference teams for their respective seasons. 
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Table 15 below exhibits the number of new players that were selected to the all-conference 

teams by the model but were not originally selected by the ASUN selection committee.  

Table 15: New Players Selected to the All-Conference Teams 

Season # of new players 

on the all-

conference team 

2011-12 6* 

2012-13 6 

2013-14 4 

2014-15 6 

2015-16 6 

2016-17 5 

2017-18 2 

2018-19 5 

2019-20 4 

2020-21 6 

2021-22 4 

It is important to note that 2011-12 was unique as 11 players selected to the 1st- and 2nd all-

conference teams as two players tied for the last spot on the 1st team. As exhibited in Table 15, 

50 players were not initially selected to be on their respective season’s ASUN all-conference 

team but were worthy of being selected as one of the top ten players in the conference. 

Alternatively, Table 15 also suggests that 51 players were correctly selected which suggest a 

50.5%, 51/101, success rate in picking the correct players to the team each year. This rate 

suggests that the current method is selecting the deserving players slightly more than half of the 

time. Consequently, this figure needs to increase for these selection committees to be respected 

enough so that they can continue having the opportunity to select the all-conference teams. 
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Additionally, some movement between the all-conference teams occurred as players shifted from 

the first team to the second team, second team to the first team, into the first or second team from 

not being selected, or not being chosen by the model despite being originally chosen for the all-

conference teams which is shown in Table 15. In addition to changes in the selected all-

conference teams, the conference player of the year also changed through the model’s analysis. 

The conference player of the year was selected by choosing the player with the highest WAR 

value through the model’s formulation and comparing this player to the selection committee’s 

conference player of the year. These comparisons are shown in Table 16 below.  

Table 16: Movement within the All-Conference Teams  

Season No 

change in 

selection 

From 1st to 

2nd 

From 2nd to 

1st 

From 

unselected to 

1st / 2nd  

From 1st / 

2nd to 

unselected  

Did the 

Player of 

the Year 

change? 

2011-12 4 1 0 6 6 Yes 

2012-13 2 0 2 6 6 Yes 

2013-14 2 2 2 4 4 Yes 

2014-15 3 1 0 6 6 No 

2015-16 3 1 0 6 6 Yes 

2016-17 1 2 2 5 5 Yes 

2017-18 6 1 1 2 2 Yes 

2018-19 3 2 0 5 5 Yes 

2019-20 4 1 1 4 4 No 

2020-21 3 0 1 6 6 Yes 

These results suggest that my analysis has been effective in highlighting biases toward the 

offensive aspect of the game of basketball. In seven out of ten years, there is significant 

movement of players into and out of the model which suggests the need for a reevaluation of the 

methods for selecting the players on the all-conference teams. However, the movement between 

the first and second teams was limited within the model. This observation suggests that better 

analysis needs to occur at the margin of the selections when determining whether a player should 

be selected for the second team or not selected for either team.  
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After completing the construction of the model and considering movements within the 

all-conference teams historically, the model was applied to this year’s data. Using the same 

process as earlier, I determined which players should been selected to the all-conference teams 

and compared these results to the all-conference teams that were selected by the league. I have 

included these results in Table 17.  

Table 17: 2021-2022 Results 

 Selected Player School Model Selection School  

1st team Darius McGhee Liberty Kyle Rode 
 

Liberty 

 Darian Adams Jacksonville 

State 

Kevin Samuel Florida Gulf 

Coast 

 Tavian Dunn-

Martin 

Florida Gulf 

Coast 

Darius McGhee Liberty 

 Kevion Nolan Jacksonville Tyreese Davis Jacksonville 

 Ahsan Asadullah Lipscomb Juston Betz Bellarmine 

2nd team Dylan Penn Bellarmine Shiloh Robinson Liberty 

 CJ Fleming Bellarmine Kevion Nolan Jacksonville 

 Kevin Samuel Florida Gulf 

Coast 

Damaree King Jacksonville 

State 

 Kyle Rode Liberty Tavian Dunn- 

Martin 

Florida Gulf 

Coast 

 Chase Johnston Stetson Darian Adams Jacksonville 

State 

The predictions from my model for this year suggest that the ASUN committee selected 6 of the 

top 10 players correctly for the all-conference teams this year. The four players who were not 

initially selected by the committee are highlighted in Table 17. The model was correct in 60% of 

its selections this year which is an improvement from the 50.5% success rate for the 10 years of 

data that I previously analyzed. Despite a small sample size, I think this year suggests an 

improvement in the selection committee’s ability to select the true ten best performing players. 

By including this year’s selections in considering the selection committee’s recent history, their 

success rate increases to 51.35%, 57/111, which represents a small improvement in the 

committee’s ability to accurately select the all-conference teams. The movement in player’s 
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selection to the all-conference teams between the first and second teams is reflective of the 

historic trends shown in Table 15. In this year’s selections, Kyle Rode moved from the second 

team to the first team as Darian Adams and Tavian Dunn-Martin moved from the second team to 

the first team. Additionally, Ahsan Asadullah, Dylan Penn, CJ Fleming, and Chase Johnston 

moved out of the first and second team selections as their spots were taken by newcomers to the 

model in Tyreese Davis, Juston Betz, Shiloh Robinson, and Damaree King. Additionally, Kyle 

Rode replaced his Liberty teammate, Darius McGhee, as Conference Player of the Year with the 

highest WAR value as calculated by the model.  

Reflection: 

The emphasis of my model from the very beginning was on the defensive side of the 

game, and I think this model achieves that goal. I wanted to move away from considering only 

the offensive side of the game, but I believe that this model could be an overcorrection towards 

measuring for more defensive impact than is present within the game. I wanted my model to 

consider the most efficient shooters and avoid rewarding volume shooters for accumulating 

many points simply through shooting many of their team’s attempts or piling up points at the free 

throw line exclusively. However, I think my model may actually bias against volume shooters as 

the model does not account for points scored in any fashion. Originally, I wanted my model to 

avoid biasing my model toward the players on the top teams in the conference. I believe that my 

methodology in this paper attempts to avoid this pitfall, but there are several instances where one 

team has multiple players on the all-conference teams in a particular season. Despite this result, I 

contend that these teams were composed of the top players within the conference as they helped 

their respective teams achieve a high level of success that season. This idea suggests that the top 

players make the top teams and not the other way around, which discounts the theory about all- 
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conference teams being biased toward top teams. I was surprised that the conference player of 

the year changed in eight out of the ten years as shown in Table 16. However, I believe this 

speaks to the intent behind the model as the model aims to have less of a bias toward the 

offensive parts of the game. Marginal changes in the methods of analysis can decide whether a 

player is conference player of the year or only selected to the first or second team. This 

observation is important for a player who scores twenty points a night with lackluster defensive 

performance as a consideration of all aspects in the game of basketball is necessary to most 

accurately select the all-conference team.  

I was pleasantly surprised by the R2 value of my model given the amount of raw data that 

was being considered in my analysis. These results helped me to determine what I believe are the 

most essential variables in determining player performance. However, I was surprised by the 

lack of multicollinearity and heteroskedasticity in the model given the interconnectedness and 

flowing nature of the game of basketball. The sport is not heavily segmented like baseball or 

football, so I expected the variables to potentially dilute the effects of the other variables. I 

believe that the lack of these econometric issues displays the thoughtfulness put into selecting 

these variables to prevent these issues from occurring. Additionally, the lack of these issues 

suggests that the model is accurate in determining who the top players are within the ASUN 

conference to prevent the incorrect selections for the all-conference teams in the future.  

Overall, I think my model presents a unique approach to evaluating player performance 

to better select the all-conference teams in the ASUN conference. Econometric models have been 

utilized previously in modeling collegiate basketball, but the inclusion of the Individual Stops 

and Stop% statistics allows for a more accurate analysis of player performance to truly determine 

which players have the greatest positive impact on their team’s success. The model presented 
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within this paper attempts to emphasize the other aspects of the game of basketball without 

discounting a player’s ability to score points at a high level. I believe the ideas presented in this 

paper could be utilized by other conferences in selecting their all-conference teams, even 

conferences that select a third all-conference team, all-defensive teams, all-freshmen teams or be 

used by college programs to evaluate players in the transfer portal to determine who would 

provide the most additional value to their team outside of the ability to score many points 

through volume shooting. Through my analysis, I realized how the coaches and media of the 

selection committee attempts to spread out these selections throughout the teams in the 

conference. However, this paper argues the need for the stoppage of this practice so that these 

all-conference teams truly represent the players who performed at the highest level for a 

particular season. 
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